lunes, 12 de marzo de 2012

Transformaciones Geometricas


2.4. Transformación Ventana-Área de Vista
Algunos paquetes gráficos permiten que el programador especifique coordenadas de primitivas de salida en un sistema de coordenadas de mundo de punto flotante, usando las unidades que sean relevantes para el programa de aplicación: angstroms, micras, metros, millas, años luz, etcétera. Se emplea el término de mundo porque el programa de aplicación representa un mundo que se crea o presenta interactivamente para el usuario:
Como las primitivas de salida se expresan en coordenadas de mundo, hay que indicar al paquete de subrutinas gráficas cómo establecer la correspondencia entre las coordenadas de mundo y las coordenadas de pantalla (usaremos el término específico coordenadas de pantalla para relacionar este análisis específicamente con SRGP, pero podrían usarse dispositivos de impresión, en cuyo caso sería más apropiado el término coordenadas de dispositivo).

2.5. Transformaciones de Composición General y de Eficiencia Computacional
Una transformación bidimensional general, que representa una combinación de traslaciones, rotaciones y escalaciones. Solo necesitamos efectuar cuatro multiplicaciones y cuatro adiciones para transformar las posiciones de las coordenadas. Este es el número máximo de cálculos que se requieren para cualquier secuencia de transformación, una vez que se han concatenado las matrices individuales y evaluadas los elementos de la matriz compuesta. Sin concatenación, se aplicarían las transformaciones individuales una a la vez y se podría reducir en forma considerable el número de cálculos. De esta manera, una implementación eficiente de las operaciones de transformación consiste en formular matrices de transformación, concatenar cualquier secuencia de transformación y calcular las coordenadas transformadas

2.6. Representación Matricial de Transformaciones Tridimensionales
Así como las transformaciones bidimensionales se pueden representar con matrices de3 X 3 usando coordenadas homogéneas, las transformaciones tridimensionales se pueden representar con matrices de 4 X 4, siempre y cuando usemos representaciones de coordenadas homogéneas de los puntos en el espacio tridimensional. Así, en lugar de representar un punto como (x, y, z ), lo hacemos como (x, y, z, W ), donde dos de estos cuádruplos representan el mismo punto si uno es un multiplicador distinto de cero del otro: no se permite el cuádruplo (0, 0, 0, 0). Como sucede en el espacio bidimensional, la representación estándar de un punto (x, y, z, W ) con W ≠ 0 se indica (x/W, y/W, z/W, 1).


2.7. Composición de Transformaciones Tridimensionales
El objetivo es transformar los segmentos de línea dirigida P1P2 y P1P3 en la figura 2.18 de su posición inicial en la parte (a) a su posición final en la parte (b). De esta manera, el punto P1 se trasladará al origen P 1P2 quedará en el eje positivo y P 1P3 quedará en la mitad del eje positivo del plano (x, y ). Las longitudes de las líneas no se verán afectadas por la transformación. Se presentan dos formas de lograr la transformación deseada. El primer método es componer las transformaciones primitivas T , R x , Ry y Rz . Este método, aunque es algo tedioso, es fácil de ilustrar y su comprensión nos ayudará en nuestro conocimiento de las transformaciones. El segundo método, que utiliza las propiedades de las matrices ortogonales especiales que se analiza en la sección anterior, se explica de manera mas breve pero es más abstracto.

No hay comentarios:

Publicar un comentario